

DoD MURI – Program Review

Degradation in gate dielectrics and the effects on simple integrated circuit building blocks (SICBBs)

July 14, 2006

Richard Southwick III¹, Bill Knowlton^{1,2} and Jake Baker¹

¹Department of Electrical and Computer Engineering ²Department of Materials Science and Engineering Boise State University, Boise, ID

Acknowledgments

- University Involvement **STUDENTS**:
 - Betsy Cheek (G), ECE
 - Mike Ogas (UG,G) ECE
 - Nate Stutzke (UG), ECE
 - Windy Wilson (UG) ECE
 - Carrie Lawrence (UG,G), ECE
 - Dave Whelchel (UG) ECE
 - Patrick Nagler (UG) ECE
 - David Jenkins (UG) ECE
 - Mark Elgin (UG) ECE
 - Dave Estrada (UG) ECE
 - Terry Gorseth (UG) ECE
 - □ Josh Kiepert (UG) ECE
 - Patrick Price (UG) MSEFACULTY:
 - Amy Moll, ME Faculty

- □ Industry Involvement
 - Santosh Kumar, *Cypress Semiconductor*
 - Dr. Amr Haggag, *Motorola/Freescale*
 - Dr. Gennadi Bersuker, SEMATECH
 - Dr. Rino Choi, SEMATECH
- Funding
 - 2001 DOD Multidisciplinary Research Initiative (MURI)
 - NSF-Idaho EPSCoR Program
 - Cypress Semiconductor
 - NSF Major Research Instrumentation Grant
 - DARPA Grant
 - 2000 Governor's Higher Education
 Initiative Idaho State Board of Education
 - 2003 Micron Campus Engineering Research Program
 - NIH INBRE #P20RR16454

MURI Supported Journal & Conference Publications

(*denotes student authors)

- Southwick III*, Richard G. and William B. Knowlton, *Stacked Dual Oxide MOS Energy Band Diagram Visual Representation Program*, IEEE Transactions on Device and Materials Reliability, (2006) accepted for publication.
- T. L. Gorseth*, D. Estrada*, J. Kiepert*, M. L. Ogas*, B. J. Cheek*, P.M. Price, R. J. Baker, G. Bersuker, W.B. Knowlton, *Preliminary Study of NOR Digital Response to Single pMOSFET Dielectric Degradation*, presented at the Workshop on Microelectronic Devices (Boise, Idaho; April 14, 2006)
- M. L. Ogas*, P. M. Price*, J. Kiepert*, R. J. Baker, G. Bersuker, and W. B. Knowlton, *Degradation of Rise Time in NAND Gates Using 2.0 nm Gate Dielectrics*, oral presentation and publication at the 2005 IEEE Integrated Reliability Workshop, (October 2005) p. 63-66.
- □ Ogas* M. L., R. G. Southwick III* B. J. Cheek* R. J. Baker, G. Bersuker, W. B. Knowlton, *Survey of Oxide Degradation in Inverter Circuits Using 2.0nm MOS Devices*, in proceedings of the 2004 IEEE International Integrated Reliability Workshop, (Oct. 2004), pp. 32-36.
- Cheek* Betsy J., Stutzke* Nate, Santosh Kumar, R. Jacob Baker, Amy J. Moll and William B. Knowlton, *Investigation of Circuit-Level Oxide Degradation and its Effect on CMOS Inverter Operation Performance and MOSFET Characteristics*, in proceedings of the 2004 IEEE International Reliability Physics Symposium (April, 25-29, 2004) pp. 110-116.
- □ Kumar, Santosh, William B. Knowlton, Sridhar Kasichainula and Cesar Payan, *SRAM Subthreshold Current Recovery after unipolar AC stressing*, in proceedings of the 2004 IEEE International Reliability Physics Symposium (April, 25-29, 2004) pp. 46-48.
- Stutzke*, N., B.J. Cheek*, S. Kumar, R.J. Baker, A.J. Moll and W.B. Knowlton, *Effects of Circuit-Level Stress on Inverter Performance and MOSFET Characteristics*, in proceedings 2003 IEEE International Integrated Reliability Workshop, (Oct, 20-23, 2003) pp. 71-79.
- Payan, C., S. Kumar, A. Thupil, S. Kasichainula and W.B. Knowlton, *Leakage Current Recovery in SRAM after AC stressing*, in proceedings 2003 IEEE International Integrated Reliability Workshop, (Oct, 20-23, 2003) pp. 67-70.
- Lawrence*, C.E., B.J. Cheek*, T.E. Lawrence*, Santosh Kumar, A. Haggag, R.J. Baker, and W.B. Knowlton, *Gate Dielectric Degradation Effects on nMOS Devices Using a Noise Model Approach*, in Proceedings of the 15th Biennial IEEE University/Government/Industry Microelectronics (UGIM) Symposium, June 30 July 2, 2003, pp.263-266.
- □ Kumar, Santosh and William B. Knowlton, *Alternate method of TDDB study for aluminum oxide using magneto-resistance*. in IEEE International Integrated Reliability Workshop, (2002) pp. 180-183.
- Knowlton, W.B., T. Caldwell^{*}, J.J. Gomez^{*}, and S. Kumar. *On the nature of ultrathin gate oxide degradation during pulse stressing of nMOSCAPs in accumulation*. in IEEE International Integrated Reliability Workshop, (2001) pp. 87-88.

MURI Supported Conference Presentations, Posters and Extended Abstracts (to show inclusion of UG and Grad students as authors*)

Richard Southwick III*, Michael Ogas* and William B. Knowlton, *Interactive dual oxide MOS energy band diagram program*, poster presentation at the 2005 IEEE International Integrated Reliability Workshop, (October 2005).

UNIVERSITY

- Richard G. Southwick III*, Vaughn Johnson*, Joe Lindsey*, Tim Lawrence*, Jim Jozwiak, Amy Moll, William B. Knowlton, *Through Wafer Interconnects: Preliminary Investigation Of Plasma Induced Damage In pMOSFETs By BOSCH DRIE*, poster presentation at 2004 IEEE International Integrated Reliability Workshop, (Oct. 2004).
- Ogas*, Michael, Richard Southwick III*, Betsy Cheek*, Carrie Lawrence*, BSU, Santosh Kumar, Amr Haggag, Jacob Baker, and William Knowlton, *Multiple Waveform Pulse Voltage Stress Technique for Modeling Noise in Ultra Thin Oxides*, poster presentation at Workshop on Microelectronics and Electron Devices, (Boise, Idaho, April 16, 2004).
- □ Ogas, Michael*, Dorian Kiri*, Ouahid Salhi*, Richard Southwick III*, Betsy Cheek*, William B. Knowlton, *Investigation of Ultra Thin Gate Oxide Reliability in MOS Devices and Simple ICs*, poster presentation at Workshop on Microelectronics and Electron Devices, (Boise, Idaho, April 16, 2004) and at 2004 IEEE International Integrated Reliability Workshop, (Oct. 2004).
- □ Ogas*, M. L., R. G. Southwick III, B. J. Cheek*, C. E. Lawrence*, S. Kumar, A. Haggag, R. J. Baker, W. B. Knowlton, *Investigation of Multiple waveform pulse voltage stress (MWPVS) technique in ultrathin oxides*, poster presentation at the 2003 IEEE International Integrated Reliability Workshop (Oct, 20-23, 2003).
- Stutzke*, Nate, Betsy J. Cheek*, and William B. Knowlton, *Circuit-level stress and gate dielectric degradation in MOSFETs*, oral presentation and poster at the 2003 Micron Foundation Summer Technical Conference, Boise, ID (August 8, 2003). [Awarded Best Poster Award]
- Southwick III, R.G. *, Betsy Cheek* and William B. Knowlton, *Charge pumping techniques for MOS devices*, oral presentation and poster at the 2003 Micron Foundation Summer Technical Conference, Boise, ID (August 8, 2003).
- Cheek, Betsy*, Carrie Lawrence*, Tim Lawrence*, Jose Gomez*, Theodora Caldwell*, Dorian Kiri*, Santosh Kumar, Jake Baker, Amy J. Moll and William B. Knowlton, *Gate dielectric degradation effects on nMOS devices and simple IC building blocks* (*SICBBs*), extended abstract accepted for poster session at IEEE/EDS Workshop on Microelectronics and Electron Devices, (October 25, 2002).
- Lawrence*, C., B. Cheek*, T. Caldwell*, T. Lawrence*, D. Kiri*, S. Kumar, J. Baker, A. J. Moll and W. B. Knowlton, *Pulse voltage stressing of ultrathin gate oxides in NMOS devices*, poster session at the IEEE International Integrated Reliability Workshop, (October 21-24, 2002).
- Cheek*, B., C. Lawrence, T. Lawrence*, T. Caldwell*, D. Kiri*, S. Kumar, J. Baker, A. J. Moll and W. B. Knowlton, *Circuit level reliability of ultrathin gate oxides for SICBBs: Preliminary study concentrated on the effect of stress on the NMOSFET of an inverter*, poster session at the IEEE International Integrated Reliability Workshop, (October 21-24, 2002).
- □ Knowlton, William B., *Research efforts in materials science related areas at Boise State University*, invited talk at Idaho State University-Idaho Accelerator Center Workshop on "Application of Novel X-ray sources to Biological and Materials Science" (September 5 & 6, 2002).

Outline

□ Statement of Work for Gate Oxide Reliability

Developed Measurement Techniques Developed

Circuits Studied Relative to Gate Oxide Thickness

Alternative Gate Dielectrics

Generation Future Work

□ Focus: Gate dielectric/oxide (SiO₂) degradation by EM radiation in MOSFETs & Effects on ICs

- Determine degradation mechanisms in gate dielectric due to EM radiation
- Mimic EM radiation-induced degradation in gate oxides using DC techniques
- Determine how gate oxide degradation mechanisms affect simple integrated circuit building blocks
 - ✓ Inverters
 - ✓ Logic gates: NAND & NOR
- ☐ <u>To do this:</u> Developed 2 test and measurement techniques
 - I) Multi-Waveform Pulse Voltage Stressing
 - 2) Switch Matrix Technique

Techniques for Examining EM Radiation Effects on Devices and Circuits

Multi-Waveform Pulse Voltage Stressing (MWPVS)

Switch Matrix Technique

BOISE Multi-waveform Pulse Voltage Stressing (MWPVS)
STATE - Mimics EM Radiation-IC Coupling

- Continued size reduction in ICs, leads to:
 - Very close interconnect proximity
 - EM radiation will
 Capacitive Couple to
 Interconnects
 - Cause noise spiking
 - Increase voltage:

✓ From:
$$V_{carrier}$$
✓ To: $V_{carrier} + V_{EM} = V_{noise}$

Reliability Test Methods

Agilent

4156C

- **RVS** (ramped voltage stress)
 - DC difficult to extract time dependency
- CVS (constant voltage stress)
 - DC NOT typical for digital circuit operation
- PVS (pulse voltage stress)

Ch 1

Ch 2

Better mimics digital device behavior

MWPVS

Agilent

81110A

Pulse

Pattern

Generator

 Represents circuit operation with noise source such as EM radiation

O'scope

MWPVS - Experimental Results

- **Pre-** and post- MWPVS I_{GATE} - V_{GATE} results:
 - Degradation mechanisms observed
 - ✓ SILC (Stress Induced Leakage Current)
 - ✓ SBD and Softer SBD (Soft Breakdown)
 - ✓ LHBD (Limited Hard Breakdown)
 - ✓ HBD (Hard Breakdown)

Finding: Degradation mechanisms induced by either EM-like pulse voltage stressing or DC stress the same.

MWPVS

☐ *Weibull plots* indicate device lifetime decreases by orders of magnitudes when compared to preliminary CVS data

MWPVS

Weibull Plots

Similar results for lower frequencies

Preliminary Noise Model for MWPVS

- ☐ Initial data indicates that increasing the noise signal decreases device lifetime <u>exponentially</u>[†]
 - $\square d, constant proportional to <math>DC_{BASE}$ of carrier signal
 - d', constant proportional to DC_{SPIKE} of noise signal
 - \Box *c*, voltage accelerator factor
 - $\bullet \ dV, \text{ noise amplitude}$

EM Radiation can cause significant reduction in lifetime (over 3 orders of magnitude)

$$\frac{1}{t_{bd,noise}} \approx d \cdot e^{c|V|} + d' \cdot e^{c(|V| + |dV|)}$$

$$\Delta t_{bd} = \frac{t_{bd} - t_{bd,noise}}{t_{bd,noise}}$$
$$t_{bd} = T \cdot DC_{BASE} \cdot P_{bd}$$

□ Designed a MWPVS technique to simulate effects of EM radiation on MOSFETs

□ Reliability Issues

✓ Constructive Interference occurs due Superposition of waveforms

- o Electromagnetic radiation
- o Capacitive Coupling
- o Mixed Signals

□ Device lifetime shorter for EM-like radiation than PVS or CVS

Techniques for Examining EM Radiation Effects on Devices and Circuits

□ Multi-Waveform Pulse Voltage Stressing (MWPVS)

Switch Matrix Technique (SMT)

BOISE Gate Oxide Reliability in Simple IC Building Blocks (SICBBs)

□ Only one other group examining SICBB reliability

☐ They can only perform VTC – a DC technique

Inverter

- They did not examine time domain
- Cannot determine oxide degradation mechanism
- Why? Because they cannot examine *individual* MOSFETS

¹ J.H. Stathis, R. Rodriguez, B.P. Linder, "Circuit Implications of Gate Oxide Breakdown," *Proceedings WoDIM*, 2002.

- □ Reliability studies focus mainly on MOSFETS and large-scale ICs.
- Degradation effects in MOSFETs cannot be directly correlated to gate oxide degradation in ICs
- □ **<u>ANSWER</u>**: We developed a method that can isolate MOSFET from IC to:
 - examine EM-radiation-like oxide degradation in individual MOSFETs
 - Induce EM-radiation-like oxide degradation in individual MOSFETs or circuit
- □ <u>METHOD</u>: Switch Matrix Technique (SMT) enables reliability studies at the simple integrated circuit building block (SICBB) level.¹
- □ Using SMT, reliability studies have focused on the following **SICBBs**:^{1,2}
 - Inverter (t_{ox} : 3.2 and 2 nm)
 - Transmission Gate (TG not shown)
 - **D** NAND (t_{ox} : 2 nm)
 - **D** NOR $(t_{ox}: 2 \text{ nm})$

²M. L. Ogas, et al., "Degradation of risetime in NAND gates using 2nm gate dielectrics," in 2005 Proc. IEEE IIRW, pp. 63-66.

¹B. Cheek, *et al.*, "Investigation of circuit-level oxide degradation and its effect on CMOS inverter operation and MOSFET characteristics," in *2004 Proc. IEEE IRPS*, pp. 110-116.

BOISE STATE Switch Matrix Technique (SMT) - System

Switch Matrix Technique (SMT) - Experimental Setup

Switch Matrix Technique

Switch Matrix Technique (SMT) -Addressing Load Capacitance

 Δt_r is within standard deviation when comparing wire bonded NAND circuit and SMT NAND circuit.

Simulation of NOR circuit shows when C_{load} is decreased, Δt_r percent remains constant.

SMT is a viable technique

SMT Experimental Procedure

B

V_{IN}

V_{IN}

SMT – SICBBs Studied

2nm pMOSFET Gate Oxide Degradation (I_G-V_G)

□ Observed gate leakage current increase (2.0 nm)

- Accumulation mode ~ 2 to 3 orders of magnitude
- Inversion mode < 1 order of magnitude

Output behavior transitions from 1 to 0

¹R. J. Baker, H. W. Li, and D. E. Boyce, "CMOS: Circuit design, layout, and simulation," IEEE Press, pp. 201-228, 1998.

2nm NAND Gate VTC and V-t Response

+R. J. Baker, "CMOS: Circuit design, layout, and simulation," 2 ed: IEEE Press Wiley-Interscience, pp 317-318, 2005.

2nm NOR Gate V-t Response

Time (a.u.)

- Approximately $\frac{1}{2} \Delta t_{r,NAND}$
- Significant reduction in NOR circuit performance

- Switch Matrix Technique viable technique
 - Determine degradation in individual devices
 - Ability to connect device degradation to circuit degradation
- Gate Oxides: 2.0 nm more susceptible than 3.2 nm to EM-radiation-like degradation
 - SICBB failure may result at a fairly low level degradation
- □ VTC measurements may show negligible inverter degradation
 - Suggests Oxide degradation effects in SICBBs <u>are not</u> a reliability issue
- Decrease in logic gate performance, particularly in time domain, directly related to:

$$\Delta I_{DRIVE} \longrightarrow I_{DRIVE} \propto \frac{1}{R_{CH}} \longrightarrow \Delta t_r \propto \Delta R_{CH}$$

□ Observed degradation in Δt_r of the NOR gate is about half of that observed in NAND gates

High k Dielectrics to Replace SiO₂

Motivation 1.E+02 3 Simulated J_a, oxynitride 1.E+01 2.5 1.E+00-Specified J_g (<I_{sd,leak}/L_g per 2001 ITRS) 1.E-01 2 J_g (A/cm²) EOT (nm) 1.E-02-1.E-03 EOT 1.E-04 1.E-05 0.5 Beyond this point, oxynitride 1.E-06; too leaky; high K needed 1.E-07 0 2003 2005 2007 2009 2011 2013 2015 2001 Year Leading high k candidate: HfO₂ Dielectric Constant: ~25

● BL

UNIVERSITY

High k Dielectrics – HfO₂

 \Box Many Issues with HfO₂:

RODE

- Prompted by SiO_x interfacial layer (IL)
- Larger number of defects
- Reliability Assessment of IL needed

R. G. Southwick III and W. B. Knowlton, "Stacked dual oxide MOS energy band diagram visual representation program (IRW Student Paper)," *IEEE Transactions on Device and Materials Reliability*, accepted for publication, 2006. 30

HfO₂ – Preliminary RVS Reliability Testing

Time-zero dielectric breakdown studies

Future Work: Will use Variable Temperature Probestation

• Custom Design (3+ years in design & development)

Future Work: Will use Variable Temperature Probestation

- Cryogenic Temperature Studies
 - SiO₂ gate oxides
 ✓ Device reliability
 ✓ Circuit reliability
 - High dielectric constant reliability
- □ High temp measurements
 - Thermal stability
 - Reliability: thermal & voltage acceleration

Thank you

Questions?